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Abstract: We considered folded spinning string in AdS5 × S5 background dual to the

Tr
(

DSΦJ
)

operators of N = 4 SYM theory. In the limit S, J → ∞ and ℓ = πJ√
λ log S

fixed

we compute the string energy with the 2-loop accuracy in the worldsheet coupling
√

λ from

the asymptotical Bethe ansatz. In the limit ℓ → 0 the result is finite due to the massive

cancelations with terms coming from the conjectured dressing phase. We also managed to

compute all leading logarithm terms ℓ2m logn ℓ
λn/2

to an arbitrary order in perturbation theory.

In particular for m = 1 we reproduced results of Alday and Maldacena computed from a

sigma model. The method developed in this paper could be used for a systematic expansion

in 1/
√

λ and also at weak coupling.
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1. Introduction

In this paper we will consider the sl(2) sub-sector of the AdS/CFT duality describing the

operators of the form Tr
(

DSΦJ
)

. This sector is known to be closed perturbatively to all

orders in the gauge coupling. This means that the operators with S derivatives and J

scalar fields mix only with each other under renormalization. The corresponding mixing

matrix in the planar ‘t Hooft limit is believed to be an integrable Hamiltonian of an sl(2)

spin chain for all values of the ‘t Hooft coupling λ. This assumption drastically simplifies

computation of anomalous dimensions of these operators which could be done by mean of
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a Bethe ansatz, based on the S-matrix approach [1]. In the sl(2) subsector the asymptotic

all-loop Bethe equations read [2 – 5]

(

x+
k

x−
k

)J

=

S
∏

j 6=k

(

x+
k − x−

j

x−
k − x+

j

)−1
1 − 1/(x+

k x−
j )

1 − 1/(x−
k x+

j )
σ2(uk, uj) , (1.1)

where x±
k ≡ 2π uk+i/2√

λ
+

√

4π2
(

uk+i/2√
λ

)2
− 1 and σ2 is the famous dressing factor [6, 4]. If

one solves this equation and finds set of uk’s the anomalous dimension is given by

γ(λ, S, J) =

√
λ

2π

S
∑

j=1

(

i

x+
k

− i

x−
k

)

. (1.2)

At the string side of the duality the corresponding state is a folded string living in

AdS3 × S1 and carrying large angular momenta S and J . The energy of the string is

given by S + J + γ(λ, S, J) via the AdS/CFT duality [7] and the world-sheet sigma model

coupling is λ−1/2.

The equations (1.1) are still rather complicated. To simplify the problem we will

consider the limit introduced in [8, 9] when J, S → ∞ and

ℓ =
πJ√

λ log S
(1.3)

is fixed. In this limit the anomalous dimensions scales as log S [10] and one defines the

so-called generalized scaling function f(λ, ℓ) by

∆ − S − J = γ = λ1/2 f(λ, ℓ)

π
log S (1.4)

or equivalently

f(λ, ℓ) =
γ(λ, ℓ, J)ℓ

J
. (1.5)

We will compute this quantity as an expansion in 1/
√

λ keeping a full functional

dependence on ℓ.

f(λ, ℓ) = fcl(ℓ) + λ−1/2f1−loop(ℓ) + λ−1f2−loop(ℓ) + . . . . (1.6)

This object was studied intensively at both strong and weak coupling [3, 4, 8, 9, 11 – 23].

The strong coupling expansion is known up to two loops to be

fcl(ℓ) =
√

ℓ2 + 1 − ℓ (1.7)

f1−loop(ℓ) =

√
ℓ2 + 1 − 1 + 2(ℓ2 + 1) log

(

1 + 1
ℓ2

)

− (ℓ2 + 2) log
√

ℓ2+2√
ℓ2+1−1√

ℓ2 + 1
(1.8)

f2−loop(ℓ) = −C + ℓ2
(

8 log2 ℓ − 6 log ℓ + q02

)

+ O
(

ℓ4
)

, (1.9)

where C is Catalan’s constant and q02 is some number. The two-loop term (1.9) have not

been yet computed for an arbitrary ℓ. Only a couple of terms in small ℓ expansion are

– 2 –
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known [22]. In this paper we will compute f2−loop(ℓ) directly from Bethe ansatz (1.1). We

will see that the result is finite in ℓ → 0 limit only due to massive cancelations with terms

coming from the dressing factor.

Our method is similar to [17], where the one loop result (1.8) of [9] was confirmed from

the Bethe ansatz (1.1). We will expand (1.1) first in the classical limit S ∼ J ∼
√

λ [24]

and then pass to the limit described above. This order of limits is exactly the same as

in perturbative expansion of the worldsheet sigma model [21] and we are free from the

potential order-of-limits problem.

It is known that a two-loop computation in Bethe ansatz is qualitatively more com-

plicated problem then a one-loop computation. At two loops the discreet behavior of the

Bethe roots uk becomes important [25]. In this paper we will show how to efficiently

override these difficulties and rewrite (1.1) as a quadratic equation.

Basing on some natural assumptions about the behavior of the strong coupling expan-

sion at small ℓ we managed to compute all the terms of the form ℓ2m logn ℓ
λn/2

in f(λ, ℓ) using just

1-loop result for f(λ, ℓ). In a particular case m = 1 we found a perfect agreement with [19].

The paper is organized as follows: in section 2 we expand the Bethe equations in clas-

sical limit and rewrite it as a simple quadratic equation, in section 3 we focus on the terms

coming from the Hernandez-Lopez phase and “anomaly” contribution, in section 4 we com-

bine all the contributions together and write down our 2-loop correction to the scaling func-

tion, in section 5 we subtract leading logarithms at all orders in 1/
√

λ, in section 6 we con-

clude. Appendix A contains some intermediate computation, in appendix B we write an ex-

pansion in powers of ℓ and in tables 1, 2 and 3 we give our results in Mathematica syntaxis.

2. Strong coupling expansion of Bethe equations

In this section we will expand Bethe equations (1.1) in the strong coupling limit λ → ∞.

We will also keep S, J ∼
√

λ. It is well known that in these settings the Bethe roots uk

scale like
√

λ [24]. It is convenient to introduce

xk ≡ 2π
uk√
λ

+

√

4π2

(

uk√
λ

)2

− 1 (2.1)

so that xk ∼ 1. Then x±
k , which enter the Bethe equations (1.1) and the expression for

anomalous dimensions (1.2), can be expanded in 1/
√

λ

x±
k = xk ± iα(xk)

2
+

α2(xk)

4xk(x
2
k − 1)

± . . . (2.2)

where α(x) = 4π√
λ

x2

x2−1
. It will be very useful to introduce a resolvent

G(x) =
1

J

∑

j

1

x − xj
. (2.3)

We will also use g =
√

λ
4π for convenience.
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Now we can express in a compact form the expansion of anomalous dimension (1.2).

In the notations introduced above for symmetric distribution of roots it reads

γ(g)

J
= −

(

2G +
3G − 3G′ − 21G′′ − 10G(3) − G(4)

384g2
+ O

(

1

g4

))

∣

∣

∣

∣

∣

x=1

. (2.4)

To expand Bethe equations one usually takes log of both sides first. To fix the branch

of the logarithm one should add 2πink where nk are some integer numbers called mode

numbers [24]. The expansion is then straightforward and leads to

− 2πnk

Jα(xk)
=

2

J

∑

j 6=k

1

xk − xj
+

γ(g) + J

Jxk
+

xk

4g2

(

x4
k + 4x2

k + 1

(x2
k − 1)4

− G(1) + 3G′(1) + G′′(1)

3(x2
k − 1)2

)

+
VHL(xk)

Jα(xk)
+

πρ′(xk)

J

(

coth(πρ) − 1

πρ

)

+ O
(

1

g3

)

. (2.5)

Let us explain the origin of the different terms. The first line comes from the Bethe equation

with the full dressing phase, except the Hernandez-Lopez phase [26, 27] which results in

the first term in the second line. The second term in the second line is known under the

name of “anomaly” and comes from the terms in the product with j − k ∼ 1 [28]. In this

expansion we noticed that the terms G(n)(1/xk) appearing all the way cancels out when the

2-loop dressing phase is taken into account. This cancelation could be a very restrictive

condition on the phase and is probably equivalent to the crossing.1

Let us emphasize once more that the 2-loop dressing phase is taken into account, but

its contribution is not explicitly seen in (2.5). The resulting equation is much simpler and

does not contain G(n)(1/xk) terms when we mix expansion of the Bethe equation without

dressing phase with 2-loop dressing phase.

In the paper [27] a very compact representation of the Hernandez-Lopez phase [26]

was derived which we will use here

VHL(x)

α(x)
=

∫ 1

−1

(

1

x − y
+

1

x
+

1

1/y − x

)

∂y

(G(1/y) + y2G(y) − 2yG(1)

g(y2 − 1)

)

dy

2π
, (2.6)

where the integration goes along the upper half of the unit circle |x| = 1.

The anomaly term (the last term in the second line of (2.5)) contains density ρ of the

roots uk. We will use two different densities

ρ ≡ 1

∂uk/∂k
, ̺ ≡ 1

J∂xk/∂k
, (2.7)

which are trivially related

ρ(x) = Jα(x)̺(x) , ̺(x) = −G(x + i0) − G(x − i0)

2πi
, (2.8)

where α(x) = x2

g(x2−1)
.

1this cancelation appears also at higher orders. We thank to P.Vieira for discussing this point.
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To proceed one have to specify a particular set of mode numbers {nk}. Different sets

of mode numbers will lead to different solutions of the Bethe ansatz. They correspond to

different string motions. The one corresponding to the simplest folded string is

nk = −1 , k = 1, . . . , S/2 ; nk = +1 , k = S/2 + 1, . . . , S . (2.9)

On the gauge theory side this choice corresponds to the twist J operators (i.e. operators

with all Lorentz indices symmetrized and traceless). We see that this set of nk’s respects

xk → −xS−k symmetry and the resulting distribution of roots should by symmetric with

respect to the origin

̺(−x) = ̺(x) , G(−x) = −G(x) . (2.10)

When S → ∞ the roots are distributed on two symmetric cuts C = (−b,−a) ∪ (a, b) with

a ∼ 1 and b ∼ S/
√

λ [17]. It is important that the upper limit of the distribution scales

like S/
√

λ. We will also see that the resolvent we introduced scales like 1 in our limit

G(x), ̺(x) ∼ 1 for x ∼ 1 . (2.11)

2.1 Quadratic equation

Now we are coming to an important step in our calculation. We will rewrite (2.5) as a

quadratic equation. To convert (2.5) into a quadratic equation we are using the standard

trick - we multiply the equation by 1
J(x−xk) and sum over k. Using that

∑

k 6=j

2

J2(x − xk)(xk − xj)
= G2(x) +

1

J
G′(x) , (2.12)

where the last term is irrelevant for us since it is suppressed by 1/J . We arrive at

−c2(x)

4
= G2(x) +

γ + J

J

G(x)

x
+

F(x)

ℓ2
. (2.13)

This is our main equation which we will use to compute f(λ, ℓ). We introduced F(x) =

F0(x) + FHL(x) + FAn(x) with

F0(x) =
ℓ2

g2

∫

C

̺(y)

x − y

y

4

(

y4 + 4y2 + 1

(y2 − 1)4
− G(1) + 3G′(1) + G′′(1)

3(y2 − 1)2

)

dy (2.14)

FHL(x) =
ℓ2

g

∑

k

1

J(x − xk)

gVHL(xk)

Jα(xk)
(2.15)

FAn(x) = ℓ2
∑

k

πρ′(xk)

J2(x − xk)

(

coth(πρ(xk)) −
1

πρ(xk)

)

. (2.16)

So far we did not get a closed algebraic equation on the resolvent G. We introduced

above a new object c(x) defined by

−c2(x) =
∑

k

8πnk

J2α(xk)(x − xk)
= 16π

g

J

∫ b

a

̺(y)

x − y

(

1 − 1

y2

)

dy , (2.17)

– 5 –
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which depends on the resolvent. We see that (2.13) is some complicated nonlinear integral

equation. Notice that c2(x) is suppressed by g
J ∼ 1

log S . The reason why we cannot drop it

is that the density ̺ behaves as constant for large y and the integral gets large contribution

of order log b ∼ log S from large y’s (see appendix A). Since the main contribution comes

from y ≫ 1 for x ∼ 1 we can neglect x in the denominator and treat c(x) as a constant!

In appendix A we show that

c2 =
1

ℓ2
. (2.18)

this is how the quantity ℓ ≡ πJ√
λ log S

enters into our calculation.

We started from a two cut configuration whose resolvent, as is well known, is usually

expressed in terms of some elliptic integrals [24]. However when S → ∞ our two branch

points are effectively merging at infinity and we are therefore left with what resembles

a single cut solution. This explains why we can still compute the resolvent by solving a

quadractic equation.

2.2 Resolving quadratic equation

We see that we can treat c(x) as a constat for x ∼ 1. The equation (2.13) with c(x) = 1/ℓ

becoms a simple quadratic equation. We can immediately solve it and find G(x) for x ∼ 1

G(x) =

√

a2 − x2(1 + 4F) − a

2ℓx
, (2.19)

where we introduced a

a ≡ γ(λ) + J

J
ℓ = f(λ, ℓ) + ℓ . (2.20)

It is the quantity we are aiming to compute. a by itself is related to the resolvent and

its derivatives at x = 1 via (2.4). Substituting (2.19) into (2.4) we will get an algebraical

equation on a

ℓ =
√

a2 − I2 +
8a4I4 − 4a2I6 + I8

28g2(a2 − I2)7/2
+ . . . , I ≡

√

1 + 4F(a) , (2.21)

where the dots are standing for some function of I suppressed by 1/g4. The r.h.s. of (2.21)

is some complicated function of a. We can try to solve it order by order in 1/g. Since

F ∼ 1/g, to the leading order I ≃ 1 and we have

a0 =
√

ℓ2 + 1 , (2.22)

which is exactly the classical result (1.7). To the second order we will get

a1 =
2F(1, a0)√

ℓ2 + 1
, (2.23)

as we shall see that leads precisely to the correct one-loop result (1.8) of [9, 17].

For the second order iterations give

a2 = − 2F2(1, a0)

(ℓ2 + 1)3/2
− 8ℓ4 + 12ℓ2 + 5

28g2ℓ6
√

ℓ2 + 1
+

2∂aF2(1, a0)

ℓ2 + 1
. (2.24)

– 6 –
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In this way we can express a to an arbitrary order in F . F by itself is a function of g. We

will denote

F(x) = δF(x) + F̃(x) + O(1/g3) , δF(x) ∼ 1

g2
, F̃(x) ∼ 1

g
. (2.25)

To compute F(x) via (2.14), (2.15), (2.16) we will need to know resolvent G(x). We will

see that to compute F(x) it is enough to know G(x) for x ∼ 1, since the functions under

integrals and sums in (2.14), (2.15), (2.16) are decreasing fast for large x. The resolvent

can be also represented as a series in F using (2.19)

G(x) = G̃(x) + δG(x) +O
(

F2
)

, G̃(x) ≡
√

a2 − x2 − a

2ℓx
, δG(x) ≡ − xF(x)

ℓ
√

a2 − x2
. (2.26)

Accordingly we also expand the density ̺(x) = ˜̺(x) + δ̺(x)

˜̺(x) =

√
x − a

√
x + a

2πℓx
, δ̺(x) = x

F(x + i0) + F(x − i0)

2πℓ
√

x − a
√

x + a
. (2.27)

To compute F̃ we will use the leading term in the resolvent G̃(x), which does not

depend on F . Then we use F̃ to compute G(x) with 1-loop accuracy, which is enough to

compute δF . One can continue this iterative procedure to higher orders.

In the section 3 we will compute F as described above. A reader could skip the next

section and continue from section 4 where the results are summarized and are used to

compute f(λ, ℓ).

3. Computation of F

3.1 Hernandez-Lopez phase contribution

In this section we will calculate the contribution of the Hernandez-Lopez phase (2.15).

Using (2.6) we can write

FHL(x) =
ℓ2

g

∑

k

1

J(x − xk)

gVHL(xk)

Jα(xk)
= (3.1)

=
ℓ2

g

∫ 1

−1

(G(x)

x
−G(x) − G(1/y)

x − 1/y
+
G(x) − G(y)

x − y

)

∂y

(G(1/y) + y2G(y) − 2yG(1)

y2 − 1

)

dy

2π
,

where the path of integration goes along upper half of the unit circle |x| = 1.

To calculate FHL(x) to the leading order in g one just replaces G(x) by G̃(x) from (2.26)

which we denote by F̃HL(x). A straightforward integration leads to2

F̃HL(x) = − (a2 − 1)

4πg(x2 − 1)2

(

2
x2 − 1

a2 − 1
+ 4

√

a2 − x2

a2 − 1
log

a2

a2 − 1
+

2a2 − x2 − 1

a2 − 1
log

a4

a4 − 1

+2

√

x2 − a2

a2x2 − 1

a2x2 + a2 − 2

a2 − 1

[

tan−1

(√
1 − a2x2

√
a2 − 1

)

−tan−1

(√
1 − a2x2

√
a2 − x2

)]

(3.2)

− 2

x

[

a2+a2x2−2x2

a2 − 1
+2(x2+1)

√

a2−x2

a2−1

][

tanh−1(x)−tanh−1

(

x
√

a2−1√
a2−x2

)])

.

2One can copy (3.2) directly to Mathematica from table 1.
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3.1.1 Subleading order

To the next order we need FHL(x) only for x = 1, according to (4.3). In this case we can

simplify (3.1) further.

FHL(1) =
ℓ2

2πg

∫ 1

−1
∂y

(

y2G(y) + G(1/y) − 2yG(1)

y2 − 1

)(

yG(y) + yG(1/y) − 2G(1)

y2 − 1

)

dy .

(3.3)

Substituting G(x) = G̃(x) + δG(x) and taking the linear in δG term, after integration by

parts we find

δFHL(1) =
ℓ2

g

∫ 1

−1

(

2C(y)δG(1)

y
+ C(1/y)δG(1/y) − C(y)δG(y)

)

dy

4πy
, (3.4)

where

C(y) =
y2

ℓ(y2 − 1)2

(

2
√

a2 − 1 −
√

a2 − y2 − a2 − 1
√

a2 − 1/y2

)

. (3.5)

Changing coordinates y → 1/y in the second term and deforming the contour to the real

axe we will get the following very simple expression

δFHL(1, a) =
ℓ2

πg
Re

[
∫ 1

0

(

δG(1)

y
− δG(y)

)

C(y)dy

y

]

. (3.6)

We need only δG(x) to be computed. This will be achieved in the next section.

3.2 Anomalous contribution

The equation (2.16) should be understood in the following sense. We first expand for-

mally (2.16) in powers of 1/g and then perform summation over k.3 To sum over k one

can use that the expression which we have to sum has no poles on the cut C and we can

simply multiply it by the resolvent and integrate around the contour encircling only the

singularities of the resolvent G

FAn(x) =
ℓ2

J

∮

C

(

π∂y ρ̃ [coth (πρ̃) − 1/πρ̃]

x − y
+

∂y ([coth(πρ̃) − 1/πρ̃]πδρ)

x − y

)

G(y)
dy

2πi
. (3.7)

At the next stage we have also to expand G. Each term in the expansion in 1/g will

have a branch cut instead of a collection of poles at positions of the Bethe roots. The sub-

leading 1/g term in the expansion should behave as − 1
4J(x−a) close to the branch points as

we shall see (see also [25]). This term is g/J suppressed and thus is missing in the above

analysis which was done to the leading order in g/J . To see this near branch point behavior

we have to go back to the equation (2.5) and rewrite it in the continuous limit as [24, 25]

2πn

Jα(x)
= −2/G − γ(g) + J

Jx
− VHL(xk)

Jα(xk)
− πρ′(x) coth(πρ)

J
+ O(1/g2) , (3.8)

3This simple prescription was worked out based on the Airy function behavior of the resolvent close

to the branch points [25] in collaboration with Andrzej Jarosz. This prescription was derived for sl(2)

Heisenberg spin chain only. Here we are assuming that it is still valid for the all-loop sl(2) Bethe ansatz.

That could be done since the near branch point behavior is very universal.

– 8 –
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where

/G(x) ≡ G(x + i0) + G(x − i0)

2
. (3.9)

Close to a branch point density goes to zero as a square root ρ ∼ √
x − a. The last term

becomes singular and we have

/G(x) ≃ −πρ′ coth(πρ)

2J
≃ − 1

4J(x − a)
(3.10)

which proves our claim. For more details about behavior of resolvents near branch points

we refer to [25].

Although this singularity in G is suppressed by g/J it will lead to a finite contribution

which we call “boundary term”.

3.2.1 Boundary term

We replace G in (3.7) by − 1
4(y−a) − 1

4(y+a) . The contour of integration now contains only

2 poles inside and we just have to evaluate the expression in the brackets an y = ±a.

Consider first the contribution from y = a.

−ℓ2 π∂yρ[coth(πρ) − 1/πρ]

4J2(x − a)
≃ − ℓ2

4J2(x − a)
∂x

π2ρ2

6
= − a3

48g2(a2 − 1)2(x − a)
. (3.11)

Taking into account a similar contribution from x = −a we will get

Fboundary
An (x) =

a4

24g2(a2 − 1)2(a2 − x2)
. (3.12)

We see that all factors of J cancel and we get a finite contribution. For x = 1 and

a = a0 =
√

ℓ2 + 1 we get

Fboundary
An (1, a0) =

(ℓ2 + 1)2

24g2ℓ6
. (3.13)

We see that this term is very singular in the limit ℓ → 0. However then we add all pieces

together the full result is completely finite as we shall see.

3.2.2 Bulk contribution

In this section we will drop poles of the resolvent at the branch points. This implies that

we can pass to the integration along the cut with density ̺(x)

Fbulk
An (x) ≡ ℓ2

∫

C

(

π∂y ρ̃ [coth (πρ̃)−1/πρ̃]

x − y
+

∂y ([coth(πρ̃)−1/πρ̃] πδρ)

x − y

)

̺(y)dy

J
. (3.14)

Where we use notations introduced above

ρ̃(x) = Jα(x)˜̺(x) , δρ(x) = Jα(x)δ̺(x) , α(x) =
x2

g(x2 − 1)
. (3.15)

In (3.14) there are contributions of both 1/g and 1/g2 orders. We split Fbulk
An (x) further

into F̃An(x) and δFbulk
An (x) as defined below.

F̃An(x) ≡ ℓ2

∫

C

π ˜̺∂yρ̃ [coth (πρ̃) − 1/πρ̃]

x − y

dy

J
= ℓ2

∫

C

π ˜̺∂y ρ̃

x − y

dy

J
, (3.16)
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where in the last equality we use that from (3.15) ρ̃(y) ∼ J/g ≫ 1 which allowed us to

replace [coth(πρ̃)− 1/πρ̃] by 1 in the second equality. Using (2.27) one can easily evaluate

the integral (3.16) to get4

F̃An(x) =
x log a−1

a+1

(

1 + x2 − 2a2
)

+ 2ax(x2 − 1) + log a−x
a+x

(

a2x2 + a2 − 2x2
)

4πgx(x2 − 1)2
. (3.17)

3.2.3 Second order

The last contribution of 1/g2 order into FAn(x) reads

δFbulk
An (x) ≡ ℓ2

∫

C

(

∂y ρ̃ [coth(πρ̃) − 1/πρ̃]πδ̺

x − y
+

˜̺∂y([coth(πρ̃) − 1/πρ̃] πδρ)

x − y

)

dy

J

= ℓ2

∫

C

∂y (πδρρ̃ [coth(πρ̃) − 1/πρ̃])

x − y

dy

J2α(y)
(3.18)

= −
∫

C
∂y

(

1

α(y)(x − y)

)

πℓ2δρρ̃dy

J2
.

To evaluate this integral we need δρ which can be expressed in terms of F (2.27). We have

πℓ2δρρ̃

J2
= y4 F̃(y + i0) + F̃(y − i0)

4πg2(y2 − 1)2
. (3.19)

Setting x = 1 we will get the following simple result

δFbulk
An (1, a) = −1

g

∫

C

F̃(y + i0) + F̃(y − i0)

4π

y2dy

(y2 − 1)2
, (3.20)

where F̃ = F̃HL + F̃An. Using (3.2) and (3.17) one can see that

F̃(x+i0)+F̃(x−i0)=
1

πg(x2−1)2

(

(a−1)(x2−1)+
1+x2−2a2

2
log

(a − 1)a4

(a+1)(a4−1)

+
a2x2 + a2 − 2x2

2x
log

(x + 1)(x − a)

(x − 1)(x + a)
+ (2 − a2 − a2x2)

√

x2 − a2

a2x2 − 1
arctan

√

x2 − a2

a2x2 − 1

+2
x2 + 1

x

√

(a2 − 1)(x2 − a2) arctan

√

x2 − a2

x2(a2 − 1)

)

. (3.21)

The integral (3.20) can be computed numerically for an arbitrary value of a5 or expanded

in powers of ℓ. The result of this expansion is give in eq.(B.1).

3.3 Computation of F0

The only piece left to compute is F0 (2.14). Since it is already suppressed by 1/g2 this con-

tribution is especially simple to compute. We immediately evaluate integration using (2.27)

F0(1) = −24a4 + 32a2 − 7

293(a2 − 1)3g2
= −24ℓ4 + 80ℓ2 + 49

293g2ℓ6
(3.22)

4One can copy (3.17) directly to Mathematica from table 1.
5In table 2 we give a Mathematica code which computes this integral numerically.
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1.5

f2-loop

Figure 1: Two-loop correction to the generalized cusp anomalous dimension as a function of

ℓ = πJ
√

λ log S
. It interpolates between minus Catalan’s constant −C ≃ −0.916 at small ℓ’s and 0 at

large ℓ’s.

4. Scaling function at one and two loops

Using expressions for a1 and a2 in terms of F (2.23), (2.23) and results of the previous

section, where F was computed up to 1/g2 order we will compute the generalized scaling

function f(g, ℓ) with the two-loop accuracy in this section.

4.1 One-loop order

Having F̃ = F̃HL+F̃An computed we can immediately compute the one-loop energy density

using (2.23)

f1−loop(ℓ) = 8πg
F̃HL(1) + F̃An(1)√

ℓ2 + 1

∣

∣

∣

∣

∣

a=
√

ℓ2+1

. (4.1)

From (3.2), (3.17) we have for x = 1

F̃HL + F̃An =
2(a − 1) + 4a2 log a2

a+1 + log (a−1)2

a2+1
− a2 log(a − 1)2(a2 + 1)

4
√

λ
, (4.2)

and we precisely reproduce (1.8) by setting a = a0 =
√

ℓ2 + 1!

4.2 Two-loop order

Now we can write down our 2-loop result. From (2.20), (2.23) and (2.24) we have

f2−loop =
16π2

√
ℓ2 + 1

(

2g2∂aF̃2(a0)√
ℓ2 + 1

− 2g2F̃2(a0)

ℓ2 + 1
+2g2δF −

(

5

256ℓ6
+

3

64ℓ4
+

1

32ℓ2

))

, (4.3)

where a0 =
√

ℓ2 + 1 and

F̃ = F̃HL + F̃An (4.4)

δF = F0 + δFHL + δFbulk
An + δFboundary

An . (4.5)
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The quantities in the r.h.s. of the first line are given by (3.2), (3.17) and of the second line

by (3.22), (3.6), (3.13), (3.20). δFHL and δFboundary
HL could be represented explicitly as single

integrals. To evaluate them numerically one can use the Mathematica code form table 3.

In appendix B we give an expansion of these integrals in power series in ℓ up to ℓ6 order.

Let us see that the result (4.3) is finite in the small ℓ limit. This will be already a very

nontrivial test of our calculation because a priory the r.h.s. is divergent as 1/ℓ6. For the

expansion in ℓ we have

2g2∂aF̃2

√
ℓ2 + 1

≃ log 8 log ℓ

4π2
+

log2 8 − log 8

16π2
(4.6)

−2g2F̃2

ℓ2 + 1
≃ − log2 8

32π2
(4.7)

2g2F0 = − 49

768ℓ6
− 5

48ℓ4
− 1

32ℓ2
(4.8)

2g2δFboundary
2 =

1

12ℓ6
+

1

6ℓ4
+

1

12ℓ2
(4.9)

Using expansion from appendix B we have

2g2δFHL ≃ 1

ℓ4

(

− 1

4π2
+

1

24π
+

log 8

24π2

)

+
1

ℓ2

(

− 1

48
− 1

2π2
+

1

8π

)

(4.10)

+

(

− log ℓ

32π
− 5 log 8 log ℓ

16π2
− log2 8

96π2
− log 8

64π2
+

log 8

64π
+

9

128π
− C

8π2
− 1

16π2
− 1

64

)

2g2δFbulk
An ≃ 1

ℓ4

(

− 1

64
+

1

4π2
− 1

24π
− log 8

24π2

)

+
1

ℓ2

(

1

2π2
− 1

8π

)

(4.11)

+

(

log ℓ

32π
+

log 8 log ℓ

16π2
− log2 8

48π2
− log 8

64π
+

5 log 8

64π2
− 9

128π
+

C

16π2
+

1

16π2
+

1

64

)

Where C ≃ 0.916 is Catalan’s constant. We see that indeed all divergent terms cancel

and only the terms with Catalan’s constant survive leading to f2−loop = −C + O(ℓ2) in

compleat agreement with [20]! Note that only 2 out of 44 terms survive when we sum all

up! This huge cancelation entangles nontrivially all the six contributions of a very different

nature. In (6.2) we expanded f2−loop(ℓ) further in ℓ.

5. Leading logarithms

As one can see the point ℓ = 0 is a singular point of the function f1−loop (1.8). The

singular part is

f1−loop(ℓ) = − ℓ2 log ℓ2

√
ℓ2 + 1

. (5.1)

It contains log ℓ singularity. At two loops as one can see from (6.2) there is also log2 ℓ

singularity. In this section we are aiming to understand how these singularities appear in

our calculation. The central object in our calculation is F(λ, a). One can see from (4.2)

that with 1-loop precision, up to regular at a = 1 terms

F ∼ −(a2 − 1)

2
√

λ
log(a − 1) + O

(

log(a − 1)

λ

)

. (5.2)
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2-loops correction in F also contains only log(a− 1) to the first power as one can see from

expansion in appendix B. This observation allows us to assume that n-loop correction will

contain logn−1(a − 1) at most. Let us use this assumption about F to compute the log ℓ

terms to the maximal power at each order in 1/
√

λ. We can use (2.21) and drop terms

in r.h.s. suppressed by 1/λ, since they cannot contain log terms to the maximal power.

Concerning the leading log terms the equation

a =
√

1 + ℓ2 + 4F(a) (5.3)

is exact. For F it is enough to take 1-loop expression (5.2) as far as the leading logarithms

are considered. We will get some simple quadratic equation on a which leads to

aLL =

√

√

√

√1 +
ℓ2

1 + 2 log(a−1)√
λ

. (5.4)

Using that f = aLL − ℓ and expanding the above equation one finds

fLL =

∞
∑

n=0

∞
∑

m=1

knm ℓ2m logn ℓ

λn/2
, knm = (−1)n+m+1 4n(2m − 3)!! (m + n − 1)!

2m m!n! (m − 1)!
. (5.5)

In particular kn1 = (−1)n4n/2 in agreement with [19]. The terms with m > 1 could not

be captured by the O(6) sigma model. However they could correspond to a marginal op-

erators with many derivatives which should be added to the effective O(6) sigma model

action considered by [19].

6. Conclusions

In this paper we consider the sl(2) sector of the AdS/CFT correspondence. We calculate the

energy of the string rotating in AdS3×S1 with angular momenta S and J correspondingly.

In the limit S, J → ∞ with ℓ = Jπ√
λ log S

fixed we compute the 2-loop correction to its energy.

From the gauge side of the duality this corresponds to operators of the form Tr
(

DSΦJ
)

with twist J . In this limit the anomalous dimensions of the operators scale like J and one

defines the generalized scaling function f(λ, ℓ) = γ(λ)ℓ/J . The strong coupling expansion

of the generalized scaling function is organized in the negative half-integer powers of λ

f(λ, ℓ) = fcl(ℓ) + λ−1/2f1−loop(1)(ℓ) + λ−1f2−loop(ℓ) + . . . , (6.1)

where the first term is the classical energy-density of the string. The second term was

computed in [9, 17]. The last term is computed in this paper as a function of ℓ. Its small

ℓ expansion reads

f2−loop = −C + ℓ2

(

8 log2 ℓ − 6 log ℓ − log 8

2
+

11

4

)

(6.2)

+ℓ4

(

−6 log2 ℓ − 7 log ℓ

6
+ log 8 log ℓ − log2 8

8
+

11 log 8

24
− 233

576
+

3C

32

)

+ℓ6

(

6 log2 ℓ− 26 log ℓ

15
− 3 log 8 log ℓ

2
+

3 log2 8

16
− 17 log 8

30
+

12779

14400
− 3C

32

)

+. . .
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The leading term agrees with [20]. Also the ℓ2 log2 ℓ and ℓ2 log ℓ terms agree with [19]

and [22]. However the ℓ2 coefficient does not match earlier results of [22]. It is important

to understand this mismatch and to reproduce the higher terms in ℓ2 directly from the

string sigma model Feynman diagrams. That will provide very a nontrivial test of the

two-loop coefficient in the dressing phase and integrability of the AdS5 × S5 super-string

sigma model.

In this paper we also compute at each order in 1/
√

λ all the terms containing log l to

the maximal power (5.5)

f(λ, ℓ) ∼ log ℓ

λ1/2

(

−2ℓ2 + ℓ4 − 3/4ℓ6 + . . .
)

(6.3)

+
log2 ℓ

λ

(

8ℓ2 − 6ℓ4 + 6ℓ6 + . . .
)

+
log3 ℓ

λ3/2

(

−32ℓ2 + 32ℓ4 − 40ℓ6 + . . .
)

+ . . .

The ℓ2 terms reproduce earlier predictions by Alday and Maldacena [19]. We have, however,

a disagreement with [22] for what concerns the 1/λ terms.

We show that these logarithmic terms (6.3) are only probing the Hernandez-Lopez

dressing phase and are not sensitive to the higher terms in the expansion in 1/
√

λ of the

dressing phase. We also argue that the sub-leading logarithms could be computed using our

method. They should be sensitive only to first few terms in the strong coupling expansion

of the dressing phase.

As future work, it could be interesting to compute the large ℓ expansion of the scaling

function. The calculation should simplify and several worldsheet loops could be doable. It

would also be interesting to compute all log ℓ terms in the sub-leading power at each order

of perturbation theory and possibly check our results numerically.

Note added. Interesting papers [30 – 32] appeared while this paper was in preparation

during the last two days. Some of results seems to be similar. All these papers are based

on a different approach.
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A. Calculation of c(x)

In this appendix we will calculate the function c(x) defined in (2.17) as

c2(x) = −16π
g

J

∫ b

a

̺(y)

x − y

(

1 − 1

y2

)

dy , (A.1)
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due to the suppression by 1/J the only chance to get a finite result is to assume that the

density for 1 ≪ y ≪ b goes to a constant. Then from large y’s we will get a big contribution

of order log b ∼ log S ∼ J . We see that to compute c2 we only need some information about

̺(y) when y is large. In particular for x ∼ 1 we simply have

c2(x) ≃ 16π
g

J

∫ b

a

̺(y)

y
dy . (A.2)

To find behavior of ̺(x) for large x we can still use (2.13). For 1 ≪ x ≪ b ∼ S√
λ

it reads

−c2(x)

4
= G2(x) + O(1/x) . (A.3)

From (2.27) we see that for large y the density behaves as a constant ̺(y) ≃ β. Let us try

to plug this into (A.3). What we will get is

−c2(x)

4
= − πβ

ℓ log S
log(S/x) = −πβ

ℓ

(

1 − log x

log S

)

. (A.4)

Whereas in the r.h.s. of (A.3) we get G2 ≃ (πi̺)2 ≃ −π2β2 and we see that (A.3) cannot

be satisfied at large x when log x ∼ log S. This simply means that ̺(x) is not a constant

but it could also contains terms logn x
logn S which are not relevant when x becomes smaller.

This terms are not visible in (2.27). In fact one can see that the only consistent with (A.3)

combination of logn x
logn S is

̺ ≃ β1 + β2
log x

log S
, 1 ≪ x ≪ S , (A.5)

integrating with this density we will get

−c2(x)

4
≃ −π

ℓ

[

β1

(

1 − log x

log S

)

+
β2

2

(

1 − log2 x

log2 S

)]

. (A.6)

We have to equate this with

G2(x) ≃ −π2

(

β2
1 + 2β1β2

log x

log S
+ β2

2

log2 x

log2 S

)

. (A.7)

Note that we get three equations on two unknowns β1 and β2. All of them can be resolved

at the same time by setting

β1 =
1

2πℓ
, β2 = − 1

2πℓ
, (A.8)

so that

c2(x) =
1

ℓ2

log2(S/x)

log2(S)
, (A.9)

in particular when x ∼ 1 we get (2.18). The log x terms in the density are suppressed by

1/ log S when x ∼ 1 and of course does not contradict to (2.27) where this terms are absent.

Note that for the density we finally get

ρ ≃ J

g
̺ ≃ J

2πgℓ

(

1 − log x

log S

)

=
2

π
log(S/x) , 1 ≪ x ≪ S , (A.10)
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tF1[x_] = -(((a^2-1)/(4 g Pi (x^2 - 1)^2)) ((2 (x^2 - 1))/(a^2 - 1) + 4 Sqrt[(a^2 - x^2)/

(a^2 - 1)] Log[a^2/(a^2 - 1)] + ((2 a^2 - x^2 - 1) Log[a^4/(a^4 - 1)])/(a^2 - 1) +

(((2 x^2 - a^2 (x^2 + 1))/(a^2 - 1) - 2 Sqrt[(a^2 - x^2)/(a^2 - 1)] (x^2 + 1))

Log[((x + 1) (Sqrt[a^2 - 1] x - Sqrt[a^2 - x^2]))/((x - 1) (Sqrt[a^2 - 1] x +

Sqrt[a^2 - x^2]))])/ x - (I Sqrt[a^2 - x^2] (a^2 (x^2 + 1) - 2) Log[-(((Sqrt[a^2 - 1]

+ I Sqrt[1 - a^2 x^2]) (I Sqrt[a^2 - x^2] + Sqrt[1 - a^2 x^2]))/((Sqrt[a^2 - 1] -

I Sqrt[1 - a^2 x^2]) (Sqrt[1 - a^2 x^2] - I Sqrt[a^2 - x^2])))])/((a^2 - 1)

Sqrt[1 - a^2 x^2])))

tF2[x_] = (2 a x (x^2 - 1) + (x^3 - 2 a^2 x + x) Log[(a - 1)/(a + 1)]

+ (a^2 (x^2 + 1) - 2 x^2) Log[(a - x)/(a + x)])/(4 g Pi x (x^2 - 1)^2)

Table 1: Expressions for F̃HL(x) and F̃An(x) from (3.2) and (3.17)

stF[x_] = (1/(g Pi (x^2 - 1)^2)) ((a - 1) (x^2 - 1) + Sqrt[(x^2 - a^2)/(a^2 x^2 - 1)]

(2 - a^2 (x^2 + 1)) ArcTan[Sqrt[(x^2 - a^2)/(a^2 x^2 - 1)]] + 2 (x^2 + 1)

Sqrt[((a^2 - 1) (x^2 - a^2))/x^2] ArcTan[Sqrt[x^2 - a^2]/Sqrt[a^2 x^2 - x^2]] +

(1/2) (-2 a^2 + x^2 + 1) Log[(a - 1)/(a + 1)] + (1/2) (-2 a^2 + x^2 + 1)

Log[a^4/(a^4 - 1)] + ((a^2 (x^2 + 1))/(2 x) - x) Log[(x + 1)/(x - 1)] +

((a^2 (x^2 + 1))/(2 x) - x) Log[(x - a)/(a + x)])

Table 2: Expression for F̃(x + i0) + F̃(x − i0) from (3.21)

Off[Series::ztest, NIntegrate::slwcon];

dF2bulk[1, a0_] := -(2/g^2) NIntegrate[Re[(g stF[y] y^2)/(4 Pi (y^2 - 1)^2) /. a -> a0],

{y, a0, Infinity}, WorkingPrecision -> 20, MaxRecursion -> 40]

c[y_]=(y^2/(l (y^2-1)^2)) (2 Sqrt[a^2-1]-Sqrt[a^2-y^2]-(a^2-1)/Sqrt[a^2-1/y^2]);

dG[x_] = -((x (tF1[x] + tF2[x]))/(l Sqrt[a^2 - x^2]));

dG[1] = Normal[Simplify[Series[dG[x] /. a -> Zeta[3],{x, 1, 0}] /. Zeta[3] -> a]];

dF1[1, a0_] := (1/(Pi g^2)) Re[NIntegrate[g l^2 c[y] (dG[1]/y - dG[y]) (1/y) /.

a -> a0, {y, I, 1 - 10^(-30)}, WorkingPrecision -> 30, MaxRecursion -> 40]]

dF[1,l_]:=(40 l^4+48 l^2+15)/(1536 g^2 l^6)+dF1[1,Sqrt[l^2+1]]+dF2bulk[1,Sqrt[l^2+1]]

tF[1] = Normal[Simplify[Series[tF1[x] + tF2[x] /. a-> Zeta[3],{x,1,0}]]/.Zeta[3]->a];

f2loop[l_]:=((16 Pi^2 g^2)/Sqrt[l^2+1]) ((2 D[tF[1]^2,a])/Sqrt[l^2+1]-(2 tF[1]^2)/(l^2+1)

-(1/g^2) (5/(256 l^6) + 3/(64 l^4) + 1/(32 l^2)) + 2 dF[1, l]) /. a -> Sqrt[l^2 + 1];

Table 3: Numerical evaluation of δF(a0) from (4.5) and f2−loop(ℓ) from (4.3)

which is exactly what one gets from the well-known Korchemsky’s density [29]

ρ0(u) =
1

π
log

1 +
√

1 − 4u2/S2

1 −
√

1 − 4u2/S2
≃ 2

π
log(S/u) , |u| ≪ S, (A.11)

that can be used as an alternative derivation.6

B. Expansion in ℓ

In section 4 we expressed the 2-loop result for the generalized scaling function f(λ) in terms

6We would like to thank D.Serban for pointing that out.
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of two single integrals (3.6) and (3.20) of a rather complicated functions. In this appendix

we give results of the expansion of these integrals in powers of ℓ.

Expansion of (3.20) reads

g2δFbulk
An ≃ 1

ℓ4

(

− 1

128
+

1

8π2
− 1

48π
− log 8

48π2

)

+
1

ℓ2

(

1

4π2
− 1

16π

)

(B.1)

+ℓ0

((

1

64π
+

log 8

32π2

)

log ℓ− log2 8

96π2
− log 8

128π
+

5 log 8

128π2
− 9

256π
+

C

32π2
+

1

32π2
+

1

128

)

+ℓ2

((

− 3

64π2
+

log 8

32π2

)

log ℓ − log2 8

96π2
+

log 8

48π2
− 5

768π
− 17

384π2

)

+ℓ4

((

− 43

3072π2
− 3

2048π

)

log ℓ− 49 log 8

18432π2
+

3 log 8

4096π
+

15

16384π
− 3C

1024π2
+

1753

73728π2

)

+ℓ6

((

113

15360π2
+

1

2048π

)

log ℓ− log 8

5760π2
− log 8

4096π
− 1

49152π
+

C

1024π2
− 439

76800π2

)

.

We computed these coefficients analytically by a rather length procedure, which we do not

describe here. We checked this expansion by a numerical fit of the integral. We found that

the numerical mismatch of all these coefficients is less then 10−45.

For the expansion of (3.6) we found

g2δFHL ≃ 1

ℓ4

(

− 1

8π2
+

1

48π
+

log 8

48π2

)

+
1

ℓ2

(

− 1

96
− 1

4π2
+

1

16π

)

(B.2)

+ℓ0

((

− 1

64π
− 5 log 8

32π2

)

log ℓ− log2 8

192π2
− log 8

128π2
+

log 8

128π
+

9

256π
− C

16π2
− 1

32π2
− 1

128

)

+ℓ2

((

7

64π2
− 3 log 8

32π2

)

log ℓ − log2 8

192π2
+

25 log 8

384π2
+

5

768π
− C

64π2
+

1

12π2

)

+ℓ4

((

49

1024π2
+

3

2048π

)

log ℓ+
493 log 8

18432π2
− 3 log 8

4096π
− 15

16384π
+

5C

512π2
− 2671

24576π2

)

+ℓ6

((

− 421

15360π2
− 1

2048π

)

log ℓ− 1001 log 8

92160π2
+

log 8

4096π
+

1

49152π
− 9C

2048π2
+

32951

921600π2

)

.

These coefficients are also checked numerically with 30 digits accuracy.
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